• 学习
  • 下载
  • 作文

当前位置:无忧教学库教学教育高中学习高中数学高三数学高三数学:集合与逻辑用语测试题» 正文

高三数学:集合与逻辑用语测试题

[01-02 16:35:32]   来源:http://www.51jxk.com  高三数学   阅读:8651

概要:高三数学章末综合测试题(1)集合与常用逻辑用语一、选择题:本大题共12小题,每小题5分,共60分.1.设全集U={1,2,3,4,5},集合A= {1,a-2,5},∁UA={2,4},则a的值为()A.3 B.4C.5 D.6解析:由∁UA={2,4},可得A={1,3,5},∴a-2=3,a=5.答案:C2.设全体实数集为R,M={1,2},N={1,2,3,4},则(∁RM)∩N等于() 新课标第一]A.{4} B.{3,4}C.{2,3,4} D.{1,2,3,4 }解析:∵M={1,2},N={1,2,3,4},∴(∁RB)∩N={3,4}.答案:B3.如图所示,U是全集,M、N、S是U的子集,则图中阴影部分所示的集合是()A.(∁UM∩∁UN)∩SB.(∁U(M∩N))∩SC.(∁UN∩∁US)∪MD.(∁UM∩∁US)&cu

高三数学:集合与逻辑用语测试题,标签:高三数学课本|基础知识|教案,http://www.51jxk.com

高三数学章末综合测试题(1)集合与常用逻辑用语

一、选择题:本大题共12小题,每小题5分,共60分.

1.设全集U={1,2,3,4,5},集合A= {1,a-2,5},∁UA={2,4},则a的值为(  )

A.3     B.4

C.5     D.6

解析:由∁UA={2,4},可得A={1,3,5},∴a-2=3,a=5.

答案:C

2.设全体实数集为R,M={1,2},N={1,2,3,4},则(∁RM)∩N等于(  ) 新课标第一]

A.{4} B.{3,4}

C.{2,3,4} D.{1,2,3,4 }

解析:∵M={1,2},N={1,2,3,4},∴(∁RB)∩N={3,4}.

答案:B

3.如图所示,U是全集,M、N、S是U的子集,则图中阴影部分所示的集合是(  )

A.(∁UM∩∁UN)∩S

B.(∁U(M∩N))∩S

C.(∁UN∩∁US)∪M

D.(∁UM∩∁US)∪N

解析:由集合运算公式及Venn图可知A正确.

答案:A

4.已知p:2+3=5,q:5<4,则下列判断错误的是(  )

A.“p或q”为真,“p”为假

B.“p且q”为假,“q”为真

C.“p且q”为假,“p”为假

D.“p且q”为真,“p或q”为真

解析:∵p为真,∴p为假.

又∵q为假,∴q为真.∴“p且q”为真,“p或q”为真.

答案:D

A.0 B.1

C.2 D.4

答案:C

6.已知集合A={(x,y)|y=lg(x+1)-1},B={(x,y)|x=m},若A∩B=∅,则实数m的取值范围是(  )

A.m<1 B.m≤1

C.m<-1 D.m≤-1

解析:A∩B=∅即指函数y=lg(x+1)-1的图像与直线x=m没有交点,结合图形可得m≤-1.

答案:D

7.使不等式2x2-5x-3≥0成立的一个 充分不必要条件是(  )

A.x≥0 B.x<0或x>2

C.x∈{-1,3,5} D.x≤-12或x≥3

解析:依题意所选选项能使不等式2x2-5x-3≥0成立,但当不等式2x2-5x-3≥0成立时,却不一定能推出所选选项.由于不等式2x2-5x-3≥0的解为x≥3,或x≤-12.

答案:D

8.命题p:不等式xx-1>xx-1的解 集为{x|0 A.p真q假 B.“p且q”为真

C.“p或q”为假 D.p假q真

解析:命题p为真,命题q也为真.事实上,当0

答案:B

9.已知命题p:∃x0∈R,使tanx0=1,命题q:x2-3x+2<0的解集是{x|1

①命题“p且q”是真命题;

②命题“p且(q)”是假命题;

③命题“(p)或q”是真命题;

④命题“(p)或(q)”是假命题.

其中正确的是(  )

A.②③ B.①②④

C.①③④ D.①②③④

解析:命题p:∃x0∈R,使tanx0=1为真命题,

命题q:x2-3x+2<0的解集是{x|1

∴p且q是真命题,p且(q)是假命题,

(p)或q是真命题,(p)或(q)是假命题,

故①②③④都正确.

答案:D

10.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题中结论成立的是(  )

A.都真 B.都假

C.否命题真 D.逆否命题真

解析:对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题是:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因 为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线开口可以向上,因此否命题也是假命题.故选D.

答案:D

11.若命题“∀x,y∈(0,+∞),都有(x+y)1x+ay≥9”为真命题,则正实数a的最小值是(  )

A.2 B.4

C.6 D.8

解析:(x+y)1x+ay=1+a+axy+yx≥1+a+2a=(a+1)2≥9,所以a≥4,故a的最小值为4.

答案:B

12.设p:y=cx(c>0)是R上的单调递减函数;q:函数g(x)=lg(2cx2+2x+1)的值域为R.如果“p且q”为假命题,“p或q”为真命题,则c的取值范围是(  )

A.12,1 B.12,+∞

C.0,12∪[1,+∞) D.0,12

解析:由y=cx(c>0) 是R上的单调递减函数,

得0

由g(x)=lg(2cx2+2x+1)的值域为R,

得当c=0时,满足题意.

当c≠0时,由c>0,Δ=4-8c≥0,得0

所以q:0≤c≤12.

由p且q为假命题,p或q为真命题可 知p、q一假一真.

当p为真命题,q为假命题时,得12

当p为假命题时,c≥1,q为真命题时,0≤c≤12.

故此时这样的c不存在.

综上,可知12

答案:A

第Ⅱ卷 (非选择 共90分)

二、填空题:本大题共4个小题,每小题5分,共20分.

13.已知命题p:∃x∈R,x3-x2+1≤0,则命题p是____________________.

解析:所给命题是特称命题,而特称命题的否定是全称命题,故得结论.

答 案:∀x∈R,x3-x2+1>0

14.若命题“∃x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围是__________.

解析:∵“∃x∈R,2x2-3ax+9<0”为假命题,

∴“∀x∈R,2x2-3ax+9≥0”为真命题.

∴Δ=9a2-4×2×9≤0,解得-22≤a≤22.

故实数a的取值范围是[-22,22].

答案:[-22,22]

15.已知命题p:“对∀x∈R,∃m∈R使4x-2x+1+m=0”,若命题p是假命题,则实数m的取值范围是__________.

解析:命题p是假命题,即命题p是真命题,也就是关于x的方程4x-2x+1+ m=0有实数解,即m=-(4x-2x+1).令f(x)=-(4x-2x+1),由于f(x)=-( 2x-1)2+1,所以当x∈R时f(x)≤1,因此实数m的取值范围是(-∞,1].

答案:(-∞,1]

16.已知集合A={x∈R|x2-x≤0},函数f(x)=2-x+a(x∈A)的值域为B.若B⊆A,则实数a的取值范围是__________.

解析:A={x∈R|x2-x≤0}=[0 ,1].

∵函数f(x)=2-x+a在[0,1]上为减函数,

∴函数f(x)=2-x+a(x∈A)的值域B=12+a,1+a.

∵B⊆A,

∴12+a≥0,1+a≤1.解得-12≤a≤0.

故实数a的取值范围是-12,0.

答案:-12,0

三、解答题:本大题共6小题,共70分.

17.(10分)记函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=3-|x|的定义域为集合B.

(1)求A∩B和A∪B;

(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.

解析:(1)依题意,得A={x|x2-x-2>0}={x|x<-1,或x>2},

B={x|3-|x|≥0}={x|-3≤x≤3},

∴A∩B={x|-3≤x<-1,或2

A∪B=R.

(2)由4x+p<0,得x<-p4,而C⊆A,

[1] [2]  下一页


Tag:高三数学高三数学课本|基础知识|教案高中学习 - 高中数学 - 高三数学
上一篇:高三数学:数列测试题